1-(1-Pyridinio)-1-benzoyl-2-methylthio-2-thioxo-1-ethanide

By Yoshinori Tominaga and Goro Kobayashi

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi-1, Nagasaki 852, Japan

AND CHIHIRO TAMURA, SADAO SATO AND TADASHI HATA

Central Research Laboratories, Sankyo Co. Ltd, Hiromachi-1, Shinagawa-ku, Tokyo 140, Japan

(Received 21 November 1978; accepted 7 June 1979)

Abstract. $C_{15}H_{13}NOS_2$, monoclinic, $P2_1/c$, a =9.533 (2), b = 13.710 (2), c = 11.284 (2) Å, $\beta =$ $106 \cdot 6 (3)^\circ$, Z = 4. The pyridinium betaine N⁺-C(5) bond length is 1.470 Å. The intramolecular $S^{-} \cdots N^{+}$ distance is 2.937 Å.

Introduction. Although a considerable amount of research has been carried out on the synthetic chemistry of betaine compounds (Johnson, 1966), little information has been published concerning their crystal structures (Speziale & Ratts, 1965; Stephens, 1965a.b; Kawamoto, Hata, Kishida & Tamura, 1971, 1972). The title compound was synthesized by the reaction of Krohnke salt with carbon disulphide followed by addition of dimethyl sulphate (Krohnke & Gerlach, 1962). The three-dimensional intensities were collected on a Rigaku four-circle automatic diffractometer up to $2\theta = 55^{\circ}$ with Mo Ka radiation and the $2\theta/\theta$ scan mode at a scan speed of 2° min⁻¹.

A total of 2925 independent reflexions were corrected for Lorentz and polarization factors but not for absorption. The usual heavy-atom technique using the S atoms was applied for the phase determination and all except the H atoms could be detected in the first Fourier map. After three cycles of full-matrix leastsquares refinement with isotropic thermal parameters the R factor was reduced to 0.11. Positions for hydrogen atoms, whose peaks could not be obviously resolved, were calculated assuming a C-H bond distance of 1.05 Å. In the final cycle of block-diagonal least-squares refinement, all atoms were refined with anisotropic thermal parameters except for H; the Rfactor was reduced to 0.054.* The positional parameters and the bond lengths and angles are given in Tables 1, 2 and 3. A stereographic view (ORTEP; Johnson, 1965) is given in Fig. 1.

0567-7408/79/102443-03\$01.00

Discussion. The eight central atoms, S(2), C(3), S(4), C(5), C(6), O(7), N(8) and C(14) (plane A), are almost planar; the deviations of the atoms from this plane are listed in Table 4, the largest deviation (0.108 Å) being observed at N(8). The dihedral angles between

Table 1. Fractional coordinates $(\times 10^4, except for$ $H\times 10^3$) and bond lengths (Å) involving H atoms

Estimated standard deviations are given in parentheses.

	x		у		z		
C(1)	181	(4)	897 ((3)	3055	(4)	
S(2)	1932	(1)	1451 ((i)	3775	άí –	
C(3)	3076	(3)	939 (2)	2952	(3)	
S(4)	2387	(1)	229 ((l)	1701	(1)	
C(5)	4574	(3)	1160 ((2)	3405	(3)	
C(6)	5265	(4)	1778 ((2)	4404	(3)	
O(7)	4579	(3)	2177 ((2)	5061	(3)	
N(8)	5517	(3)	633 ((2)	2793	(2)	
C(9)	5994	(4)	-269 ((3)	3215	(3)	
C(10)	6731	(4)	-841 ((3)	2590	(4)	
C(11)	6971	(4)	-485 ((3)	1519	(4)	
C(12)	6498	(4)	438 ((3)	1114	(3)	
C(13)	5749	(4)	987 ((3)	1751	(3)	
C(14)	6894	(4)	1980 (2)	4717	(3)	
C(15)	7832	(4)	1580 (3)	5777	(4)	
C(16)	9303	(5)	1850 (4)	6146	(4)	
C(17)	9827	(4)	2527 (3)	5488	(4)	
C(18)	8901	(4)	2934 (3)	4441	(4)	
C(19)	/434	(4)	2658 (3)	4041	(4)	
	x	у		Z		Х-	Н
H(Cla)	-26 (5)	72	(3)	369	(4)	0.97	(4)
H(C1b)	-39 (5)	129	(3)	244	(4)	0.93	(4)
H(C1c)	35 (5)	25	(3)	256	(4)	1.08	(5)
H(C9)	582 (4)	-46	(3)	406	(3)	1.05	(3)
H(C10)	707 (4)	-152	(3)	294	(3)	1.04	(4)
H(C11)	758 (4)	-88	(3)	103	(3)	1.06	(3)
H(C12)	665 (4)	69	(3)	31	(3)	1.02	(4)
H(C13)	533 (4)	163	(3)	146	(3)	0 ∙98	(4)
H(C15)	738 (4)	110	(3)	629	(3)	1.05	(4)
H(C16)	996 (4)	162	(3)	695	(3)	1.00	(3)
H(C17)	1086 (4)	275	(3)	579	(3)	0.99	(3)
H(C18)	927 (4)	344	(3)	391	(3)	1.04	(4)
H(C19)	676 (4)	297	(3)	320	(3)	1.07	(3)

© 1979 International Union of Crystallography

^{*} Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34527 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond lengths (Å)

Standard deviations are in parentheses.

C(1)S(2)	1.802 (3)	C(9)-C(10)	1.374 (5)
S(2)-C(3)	1.767 (3)	C(10) - C(11)	1.382 (6)
C(3)–S(4)	1.686 (3)	C(11) - C(12)	1.378 (6)
C(3)–C(5)	1.405 (3)	C(12) - C(13)	1.374 (5)
C(5)–C(6)	1.414 (5)	C(14) - C(15)	1.385 (5)
C(5)–N(8)	1.470 (3)	C(14) - C(19)	1.392 (5)
C(6)–O(7)	1.246 (4)	C(15)-C(16)	1.394 (5)
C(6)C(14)	1.516 (4)	C(16) - C(17)	1.369 (6)
N(8)–C(9)	1.357 (4)	C(17) - C(18)	1.375 (6)
N(8)-C(13)	1.347 (4)	C(18)-C(19)	1.393 (4)

Table 3. Bond angles (°)

Standard deviations are in parentheses.

C(1)-S(2)-C(3)	103.1 (0)	N(8) - C(9) - C(10)	120.7(3)
S(2)-C(3)-S(4)	121.2 (2)	C(9)-C(10)-C(11)	118.9 (3)
S(2)-C(3)-C(5)	116-1 (2)	C(10)-C(11)-C(12)	119.7(3)
S(4) - C(3) - C(5)	122.8 (2)	C(11)-C(12)-C(13)	120.0 (3)
C(3) - C(5) - C(6)	127.7 (3)	N(8)-C(13)-C(12)	119.9 (3)
C(3) - C(5) - N(8)	114.7 (2)	C(6) - C(14) - C(15)	119.6 (2)
C(6)-C(5)-N(8)	117-4 (2)	C(6)-C(14)-C(19)	120.6 (3)
C(5)-C(6)-O(7)	122-2 (3)	C(15)-C(14)-C(19)	119.3 (3)
C(5)-C(6)-C(14)	120.5 (2)	C(14)-C(15)-C(16)	119.9 (3)
O(7) - C(6) - C(14)	117.3 (3)	C(15)-C(16)-C(17)	120.6 (4)
C(5) - N(8) - C(13)	120.5 (2)	C(16) - C(17) - C(18)	119.8 (3)
C(5) - N(8) - C(9)	118-2 (2)	C(17) - C(18) - C(19)	120.4 (3)
C(9) - N(8) - C(13)	120.8 (2)	C(14)-C(19)-C(18)	119.9 (4)

plane A and the pyridine and benzene rings are 89.7 and 102.6° , respectively, whereas in acetophenone desaurin the angle between the pyridine ring and the plane of the dicyanomethylide carbanion system is 3.0° (Bugg & Sass, 1965), or 11.4° (Lynch, Mellor & Nyburg, 1971). Therefore, in the present compound, the π -electron overlap between plane A and the pyridine and benzene rings seems to be so small, compared to the latter compound, that the C(5)-N(8) and C(6)-C(14) bonds exhibit normal single-bond distances.

The C(3)=S(4) length of 1.686 Å is in good agreement with the average of 1.675 Å found for a C=S bond in a half double bond of a thiocarbonyl group (Tamura, 1971). The C(3)-C(5) bond of 1.405 Å is slightly longer than the $C_{sp^2} - C_{sp^2}$ double bond in acetophenone desaurin (1.324 Å) (Lynch et al., 1971). or bis(methylthio)methyleneacetophenone (1.378 Å) (Mellor & Nyburg, 1971a), whereas the C(5)-C(6)bond of 1.414 Å is shorter than the C_{sp^2} -C=O single bond of 1.462 Å in acetophenone desaurin (Lynch et al., 1971). Bugg & Sass (1965) reported the C-N bond length in a pyridinium ylide as 1.42 Å. However, in the title compound, the C(5)-N(8) length of 1.470 Å is almost equal to the C_{sp} -N single bond of 1.48 Å observed in the diethylamine derivative (Bonamico, Mazzone, Vaciago & Zambonelli, 1973).

Fig. 1. Stereoscopic view of the molecule showing the atomic numbering used.

Table 4. Deviations (Å) from least-squares planes

Deviations of atoms not included in the calculations are given in parentheses.

	Plane A	Plane B	Plane C
C(1)	(-0.189)		
S(2)	-0.028		
C(3)	0.027	(1.512)	
S(4)	0.099		
C(5)	0.005	(0.175)	(0.900)
C(6)	0.007	(-0.992)	(-0.185)
O(7)	-0.039		(-1.320)
N(8)	-0.108	-0.001	
C(9)	(-1.348)	-0.002	
C(10)		-0.002	
C(11)		0.008	
C(12)		-0.011	
C(13)	(0.993)	0.007	
C(14)	0.065		-0.001
C(15)	(-1.057)		-0.007
C(16)			0.008
C(17)			-0.002
C(18)			-0.007
C(19)	(1.274)		0.008

The intramolecular non-bonded $S(2)\cdots O(7)$ distance is 2.715 Å which is shorter than the sum of the van der Waals radii for O and S (3.25 Å). Similar strong interactions have been reported for other compounds and the lengths are in the range 2.41–2.78 Å (Mammi, Bardi, Traverso & Bezzi, 1961; Williams, 1966; Lynch *et al.*, 1971; Mellor & Nyburg, 1971*a,b*). It is noticeable that the positively charged pyridine ring and the benzene ring come face to face, and the negatively charged S atom is above the plane of the pyridine ring as shown in Fig. 1. Thus, S(4) and N(8) which are on the *A* plane are a short distance apart (2.937 Å). Table 5. Intermolecular contacts (Å) less than 3.8 Å

Standard deviations are in parentheses.

Symmetry code

(i) $-1 + x$, (iii) $1 - x$, (v) $1 - x$, (vii) $-1 + x$,	$\begin{array}{cccc} y, & z \\ -\frac{1}{2} + y, & \frac{1}{2} - z \\ -y, & 1 - z \\ \frac{1}{2} - y, & -\frac{1}{2} + z \end{array}$	(ii) $1 - x$, (iv) $1 - x$, (vi) x ,	$\frac{1}{2} + y, \frac{1}{2} - z \\ -y, -z \\ \frac{1}{2} - y, \frac{1}{2} + z$
$\begin{array}{c} C(1)\cdots C(11)^i\\ C(1)\cdots C(12)^i \end{array}$	3·596 (5) 3·623 (5)	$\begin{array}{c} S(4)\cdots C(18)^{III}\\ S(4)\cdots C(19)^{III}\\ \end{array}$	3.487 (4) 3.638 (4)
$C(1)\cdots C(17)^{vn}$ $C(1)\cdots C(18)^{l}$ $S(2)\cdots C(9)^{v}$	3·552 (6) 3·582 (6) 3·772 (3)	$O(7) \cdots C(9)^{v}$ $O(7) \cdots C(10)^{v}$ $O(7) \cdots C(11)^{H}$	3.395 (5) 3.717 (6) 3.759 (5)
$S(2) \cdots C(17)^{i}$ $S(2) \cdots C(18)^{i}$ $S(4) \cdots C(12)^{iv}$	3·487 (5) 3·781 (5) 3·740 (4)	O(7)····C(12) ^{v1} O(7)····C(13) ^{v1}	3·769 (5) 3·163 (5)

From these data, three possible canonical forms of the title compound can be drawn: the pyridinium ylide structure (I) has sufficient negative charge on the central C(5) atom, but structures (II) and (III) may also make some contribution.

Intermolecular interatomic distances, less than 3.8 Å, are listed in Table 5, the shortest of which is $O(7) \cdots C(13)$ of 3.16 Å.

References

- BONAMICO, M., MAZZONE, G., VACIAGO, A. & ZAMBONELLI, L. (1973). Acta Cryst. 19, 898–909.
- BUGG, C. & SASS, R. L. (1965). Acta Cryst. 18, 591-594.
- JOHNSON, A. W. (1966). Ylide Chemistry. New York: Academic Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KAWAMOTO, I., HATA, T., KISHIDA, Y. & TAMURA, C. (1971). Tetrahedron Lett. pp. 2417–2420.
- KAWAMOTO, I., HATA, T., KISHIDA, Y. & TAMURA, C. (1972). Tetrahedron Lett. pp. 1611–1614.
- KROHNKE, F. & GERLACH, K. (1962). Chem. Ber. 95, 1108-1117.
- LYNCH, T. R., MELLOR, I. P. & NYBURG, S. C. (1971). Acta Cryst. B27, 1948-1954.
- MAMMI, M., BARDI, R., TRAVERSO, G. & BEZZI, S. (1961). Nature (London), **192**, 1282–1283.
- MELLOR, I. P. & NYBURG, S. C. (1971a). Acta Cryst. B27, 1954–1958.
- MELLOR, I. P. & NYBURG, S. C. (1971b). Acta Cryst. B27, 1959–1963.
- SPEZIALE, A. J. & RATTS, K. W. (1965). J. Am. Chem. Soc. 87, 5603–5606.
- STEPHENS, F. S. (1965a). J. Chem. Soc. pp. 5640-5650.
- STEPHENS, F. S. (1965b). J. Chem. Soc. pp. 5658-5678.
- TAMURA, C. (1971). Yuki Gosei Kagaku Kyokai Shi (J. Synth. Org. Chem. Jpn, in Japanese), 29, 977–990.
- WILLIAMS, D. E. (1966). Acta Cryst. 21, 340-349.

Acta Cryst. (1979). B35, 2445-2448

The 1:1 Salt from 2,2',6,6'-Tetramethyl-⊿^{4,4'}-bithiopyran (TMBTP) and 7,7,8,8-Tetracyano-*p*-quinodimethane (TCNQ)

BY BARRY F. DAROCHA AND DONALD D. TITUS

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA

AND DANIEL J. SANDMAN*

Xerox Corporation, Webster Research Center, Xerox Square W-114, Rochester, New York 14644, USA

(Received 20 March 1979; accepted 12 June 1979)

Abstract. TMBTP-TCNQ, $C_{26}H_{20}N_4S_2$, triclinic, $P\overline{1}$, a = 7.209 (1), b = 8.404 (1), c = 10.139 (2) Å, a = 107.21 (1), $\beta = 97.33$ (1), $\gamma = 102.70$ (1)°, V = 560.1Å³, $D_m = 1.35 \pm 0.01$, $D_c = 1.342$ Mg m⁻³. Fullmatrix least-squares refinement with all atoms anisotropic based on 1752 reflections led a final R of 0.037

0567-7408/79/102445-04\$01.00

and weighted R of 0.048. The TMBTP molecular ion is nearly planar except for the H atoms, while the TCNQ is slightly twisted about its long axis. The bond distances and angles observed for the TCNQ molecular ions are very close to literature values for TCNQ⁻. The molecular ions occur in an alternating (mixed) stack; least-squares planes of TMBTP and TCNQ are not quite parallel, deviating by 5.3°. The average distance from atoms of TMBTP to the plane of TCNQ is 3.4 Å.

^{*} Present address: GTE Laboratories Inc., Advance Technology Laboratory, 40 Sylvan Road, Waltham, MA 02154, USA.